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1.0 INTRODUCTION

Navy electro-optical (EO) systems will be expected to operate efficiently

. beneath extensive decks of maritime stratus clouds. The optical radiation

supporting the EO systems will be attenuated along slant transmission paths

beneath the stratus decks by aerosols and water vapor of generally unknown

concentrations and vertical gradients. The Navy needs methods/models to

specify the aerosol and water vapor concentrations and vertical gradients

as a function of atmospheric parameters easily and routinely measured to

support EO systems.

Existing knowledge on aerosols and humidity below maritime stratus cloud

decks was reviewed by Noonkester (1981a). A measurement program using the

NOSC airborne platform was designed according to findings of the review and

the NOSC sensor capabilities and is described by Noonkester (1981b). This

report presents data acquired during May and August 1981 in stratus-cloud

layers southwest of San Diego. Distinct differences in the aerosol spectra at

all elevations relative to cloud base height suggest that the May and August

data respectively represent marine and continental aerosols. Significant data

characteristics are outlined.

2.0 SENSORS

The parameters measured by the NOSC airborne sensors were:

Elevation, Z

- Radar altimeter: BONZAR Inc. Mark-lOX

- Pressure altimeter: Rosemount altitude/air speed transducer,

model 542K

Aerosols spectrum, n(r)

- PMS ASSP-100 spectrometer (0.23 pm < r < 14.7 pm)

- PMS OAP-200 spectrometer (14.2 pm < r < 150 pm)

Temperature, T

HP Quartz thermometer, model 2801A
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* Dew Point, Td

- EG&G, model 137-C3

* Sea Surface Temperature, TIR

- Barnes PRT-5 infrared sensor (9.5 < X < 11.5pm)

Measurements of T, Td TIR and z were made every 4 s. A complete aerosol

spectrum was obtained every 8 s. The relative humidity f was calculated from

T and T

The error of the radar altimeter was less than the pressure altimeter

error below about 38m. Prior to making horizontal flight measurements the

pressure altitude was set equal to the radar altitude along a low-level run.

After this setting, the pressure altitude, accurate to about ±2m up to 700m,

was used for elevation measurements.

The surface wind speed and direction were estimated from ocean surface

conditions just before horizontal runs were made.

3.0 MEASUREMENT TECHNIQUE

3.1 Measurement Levels

A slow descent through an extensive stratus cloud deck was made to
estimate the elevation of the cloud top Zt and cloud base Z . Two-minute

horizontal runs were then made near the following elevations: Z0 (low-level,

near surface), 0.2 Zc, Z /2, Z -80m, Z -60m , Z -40m , Z -20m, Zc, Z +20m ,c c ' c c ' c ' c ' c
Zc +40m, (Z c+Zt)/ 2 (mid cloud), Zt-40m, Zt and Zt+40m. The runs were made at

all elevations into and with the estimated surface wind flow.

3.2 Data Filtering by Elevation Span

The maximum and minimum standard deviations of the elevation Z were

respectively 9.3 and 1.6m and the average standard deviation was 4.7m. All

data were accepted along a horizontal run if they were within ±7m of the

2
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average elevation. Thus, most data were included within this range along

each run.

4.0 GENERAL DATA TABULATION

Table 1 gives the relative geographic position of the stratus clouds Pi

measurements, the surface wind conditions, the number of horizontal runs and

the time span of the measurements. Figure 1 shows the elevation of each

horizontal run, Zc and Zt for each of the eight days given in Table 1. The

Z 's ranged from 352m to 1090m and Z -Z ranged from 131m to 470m. (Thec t c
method of obtaining Zc is given in Section 5.) The unequal distribution of

the measurements above and below Z c was created by either poor estimates of

Z (used to specify measurement elevations) during the initial descent through

the stratus deck or temporal changes in Zc . Drizzle was not observed below

the clouds on any day.

5.0 VERTICAL TEMPERATURE AND HUMIDITY PROFILES

Figure 2 (a through h) presents T(z) and f(z) for the eight stratus decks

examined.

5.1 Temperature Profiles

Distinct changes in the vertical lapse rate of temperature were found

near the estimated cloud base heights. The elevation of this change in lapse

rate is defined to be the cloud base height Z . Zc must represent the

elevation above which the latent heat of condensation is sufficient to reduce

the lapse rate of temperature from a "near" dry to a "near" moist adiabatic

rate. This change in lapse rate is clearly shown in Figures 2a and 2h.

A superadiabatic lapse rate of temperature was measured immediately below

Z on 5 stratus cloud decks. The cause of this has not yet been determined.
c
If large cloud droplets were carried by turbulence to the sub-cloud region and

were collected on the temperature probe, the temperature sensor would show a

lower temperature than the true air temperature because the droplet tempera-

ture would approximate the (cooler) cloud air temperature and the water on the

3
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Table 1. General data on stratus measurements.

Location Wind*
(Polar, from
San Diego) V 8 Number Time (PST)

Date Range Radiel m of
1981 nm deg. s- Levels From To

May
14 60 225 3 W 13 0818 0905
28 60 225 - WNW 15 0811 0856

29 60 225 - WNW 14 0610 0654

Aug
11 50 225 3 WNW 16 0803 0856
13 80 215 3 MW 14 0826 0912
14 110 260 3 NW 14 0825 0905

17 80 225 6 NW 15 0816 0901

18 70 215 5 NW 16 0814 0904

* Estimated from airborne platform at low elevation
V Degrees from true north clockwise

4
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Figure 2. Vertical Profile of temperature and relative humidity for each day of measurement.
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Figure 2. Continued.
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probe would cool the probe by evaporation. However, if the true temperature

below Z were greater, a large discontinuity in temperature at Z would exist.c c
Any explanation for the presence of the superadiabatic region immediately

below Zc on 5 cloud decks must permit its absence on the remaining 3 cloud

decks.

Cloud top data were taken along horizontal runs when the pilot attempted

to fly in the small cloud top billows about 50 percent of the time. Detailed

measurements near Z were not attempted.
t

5.2 Humidity Profiles

The relative humidity f was calculated from the temperature and dew

point. The error in f increases with f and is >±5% near 99%. Because of the

excessive errors, f cannot be used for regions in or near the cloud. The

observed f's rarely exceeded 100% in the cloud. Trends in f have not been

examined.

The observed vertical gradients of f beneath Zc varied considerably from

the expected gradient for a dry adiabatic change. These variabilities from a

dry adiabatic change are unexplained, although turbulence is suspected.

Sensor errors are not likely to create these variations.

5.3 Sea-Surface and Cloud-Top IR Temperatures

The average sea surface temperature (SST) was obtained along the

low-level horizontal run using the downward looking Barne's PRT-5 infrared

sensor. These SST's are given in Figure 2 (a through h) (the sensor was

inoperative on 14 May 81). The average cloud-top temperature was obtained in

a similar manner for the run immediately above Zt.

6.0 AEROSOL SPECTRA

Measurements of the number n of aerosols in a volume of one cm3 for a

band width of one micron centered at a specific radius r. were made every

eight seconds during each two-minute horizontal run. A complete spectrum nr)

11



consisted of 47 n(r.)'s from n(r. = 0.3 pm) to n(r. = 150 pm). An average
n(ri) in each radius band was obtained by averaging each n(ri) observed during

each two-minute period, if found within ±7m of the average elevation. The

mean deviations of the n(r.) values above (+MD) and below (-MD) the average

were also determined. These spectra were both tabulated and plotted by

computer.

Parameters calculated from the three spectra of each horizontal run

included (1) the cumulative distribution of the number of particles where N

is defined to be the total number, (2) the total liquid water content W, (3)

the total cross sectional area A, (4) the mean radius r and (5) the extinc-

tion coefficient ke for wave lengths of 0.53, 1.06, 3.75 and 10.59pm. The

aerosols were considered to be spherical water droplets.

Figure 3 (parts a through h) shows the average n(r) for each horizontal

run as a continuous line. The vertical lines connect the +MD and -MD values

at selected ri s. Some -MD values approximately equal the average value.

. When this occurs the lower part of the line terminates near the average, or

because of occasional graphing inaccuracies, just above the average.

Figure 3 (parts a through h) and the printout of the spectra containing

the derived parameters have considerable information on the aerosol structure

in a maritime stratus-cloud layer. Graphic presentations of the data have

been constructed to depict various stratus-layer characteristics. These

presentations are displayed in this report and some preliminary results are

briefly given.

7.0 VERTICAL PROFILES OF n(ri)

Figure 4 (a through h) presents n(ri) as a function of elevation for

selected ri's, depicts Zc and Zt and indicates the measurement levels. All

n(ri)'s were taken from horizontal runs except the data on 14 May (Fig. 4a)

when slow descent data were used because of the small number of horizontal

runs made below Z . All other data in this report were taken from horizontalc
runs.

12
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One approach to develop a mudel specifying n(r) as a function of

elevation is to obtain an n-degree polynomial equation closely approximating

n(r) at selected elevations using average n(ri)'s from several data sets. An

elevation dependent model for n(r) could then be obtained by specifying the

polynomial coefficients as a function of Z-Zc . This approach was initiated
c

by Noonkester (1981b) for data taken on horizontal runs on 14 May 81.

Another method would utilize average n(ri)'s from several days' data at a

number of elevations and obtain an n-degree polynomial equation for n(r.)

having Z-Z as the independent variable. The extent these approaches will be
c

pursued has not been determined.

A few characteristics gleaned from Figure 4 are:

- n(ri)'s do not increase appreciably until Z-Zc >-10m.

- n(ri)'s increase rapidly from about Z-Z c50m to Zc c,

- The vertical variation of the n(ri)'s below Zc does not appear to

have a pattern.

- Changes in n(ri) above Zc are different for the May and August data.

For small ri, the n(ri)'s decrease and converge to the same value

near Zt , but at greater values for the August data.

- Almost all n(ri)'s decrease rapidly above Z Some stratus cases

show an increase in n(ri) for r. = 0.3pm above Zt .

8.0 AEROSOL STRUCTURE NEAR AND IN CLOUD

Figure 5 (a through h) shows the vertical variation of W, W(Fa) (moist
a

adiabatic), N and r for all days. The modal radius rm and n(rm ) are given form m
the May days. (The August data have no modes in n(r). ) The data points are

at the flight levels. The data in Figure 5 are summarized in later sections.

", ..- --. . .. . - .. . .- . .. . . . . . . .. . . .. . . .1.3



8.1 Cloud Base Height as Reference

The following common features are found near the cloud base Zc

- a distinct change in the lapse rate of temperature,

- a rapid increase in n(ri),

- formation of a mode in n(r) near r = 3pm for the May data, and

- a rapid increase in N for the August data without the formation of a

mode.

These features may be expected when f approaches and exceeds an f of 1. The

third feature is expected for marine aerosols (Neiburger and Chien, 1960).

The last feature appears to indicate the presence of a large number of con-

densation nuclei, an indication of continental aerosols. Determination of

aerosol conditions relative to Zc should reveal features common to the

saturation or condensation level. No other elevation appears to be a

reasonable reference height. Elevations relative to Z are defined to be

Z (Z = Z-Z ). Because the variations of some parameters near Z are
c t

functions of cloud thickness, Z could not be used as a reference elevation.t

Figure 6 shows the vertical distribution of the measurement elevations

for each day relative to Z . Using data at these levels, values of several

parameters were determined by interpolation for Z 's of -40, -20, 0, +20, +40,

+60, +80, +100, +120, +160 and 200m for each day. Then average values for the

days in May and August were computed for these eleven levels, called prime

levels.

8.2 Average Structure Near Cloud Base

Figure 7 shows the average vertical variation of W, N, r and r in the

range -40 < Z < 200m for the May and August data.

14
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The May and August data clearly represent different conditions. The

large value of N for the August data suggests the presence of continental

aerosols. The value of N for the May data agrees with values previously found

in marine clouds. The formation of the mode in the May data at Z near an r
c

of 3pm and the steady increase of the mode with elevation are also character-
istics of mArine clouds. r increases with elevation above Z less rapidly in

c -

the August data. In the May data, r and r increase with elevation abovem F
Z at the same rate. Thus r is controlled by the large concentration of
c

aerosols in the mode during May. W increases with elevation above Z at about

the same rate during both months although W is 0.03 and 0.07 gm m-3 at Zcc
respectively for May and August. The average W at Z for both months (equal3 c
weights) is 0.05 gm m , a value found for data taken near San Nicolas Island

in a convective layer with thin broken stratus (Noonkester, 1981c).

8.3 Air Mass Source

An examination of surface pressure synoptic maps (provided by J. Rosenthal

and T. Battalino of PMTC, Pt. Mugu, CA) at 0400 PST on 13, 14, 27, 28 and 29

May 81 and on 10-14 and 16-18 August 81 suggests the presence of a marine air
source at the measurement site during the May days and continental or mixed

air source during the August days. Average surface pressure maps will be con-

structed for the western U.S. coastal region separately for the May and August

days to better estimate the air flow and air mass soirce region.

8.4 Parameters at Selected Elevations

Tables 2 and 3 contain values of various parameters at the surface, Zc

Z c+loom, Zt and immediately above Zt.

Differences in the average W and r at the surface for the May and August

data may be characteristic of marine and continental aerosols. The average W
is 3.8 times greater and the average r is 1.7 times greater in May than in

August. This indicates the presence of a greater number of large particles

in May. A greater number of small aerosols would be expected in August if

the air source is continental.

7'
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Table 2. Data taken along low-level horizontal runs by airborne
sensors beneath stratus clouds.

Date Z T TIR f N W rTI R -3
1981 m OC OC cm gm m73

May
14 32 14.7 -- 77 148 9.3 x 10- 5  0.35

28 32 15.1 17.6 86 19 1.2 x 10- 4  0.81
29 28 14.6 18.3 86 20 8.7 x 10- 4  0.86

Ave. 31 14.8 18.0 83 62 3.6 x 10- 4  0.67

Aug
11 40 17.8 22.3 85 61 3.9 x 10- 5  0.33
13 41 19.0 19.7 77 54 2.2 x 10- 5  0.35
14 39 19.5 20.2 81 62 3.9 x 10- 5  0.39
17 44 17.5 19.1 83 125 2.4 x 10- 4  0.46
18 43 17.7 20.6 80 117 1.3 x 10- 4  0.40

Ave. 41 18.3 20.4 81 84 9.4 x 10- 5  0.39

16
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The negative air-sea surface temperature difference is large in the May

data and moderate in the August data. The IR temperature is considered to be

representative because the average T above Z is only 0.3*C and 0.1°CIR c ',-

greater than the average cloud top temperature respectively for May and August.

TIR above Zc would be expected to be slightly greater than Tt because some

IR received by the IR probe would emanate from regions just below Zt where T

*" is slightly greater than T~t. The values of T-SST are apparently real.

t

9.0 AVERAGE VERTICAL VARIATION OF n(r)

A graphical method was devised to derive n(r) at the eleven prime levels

for the May and August days and is described in the following sections.

9.1 Isopleths of Normalized n(ri)

All n(ri) values for r. 0.3, ., 13pm were normalized by N and

multiplied by 100 to obtain the parameter [n(ri)/N]100 (Slingo and Brown,

1980) having units of pm-I at measurement elevations above Z -lOOm for
c

each day. Isopleths of this parameter n'(r i) were constructed in a (ri,Z)

cartesian coordinate system. Figure 8 (a through h) shows these isopleth
patterns for each day in the region ri = 2, ... , 13pm. (Similar figures for

r. = 0.3, ... , 2pm are not shown.) A spectrum can be reconstructed for any

elevation by selecting representative n'(ri)'s and multiplying by O.O1N where

N is representative of that elevation.

Values of n'(ri) were extracted from the isopleth patterns of n'(r i) at
the prime levels for each day at 24 selected ri 's in the range 0.4pm < r. <

13m. An average n'(ri) was computed for each selected ri separately for the

May and August data at each prime level. The isopleth pattern of the average

n'(r.)'s was constructed for the May and August data as shown in Figure 9 (a

and b) for 2pm < ri  13pm.

Isopleth patterns of n'(r.) for May and August in Figure 9 have distinctly

different patterns. The presence of maximum values extending from 3pm at

18
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z 0 to 6.bpm at Z = 200m in the May data is a glaring feature not present

in the August data. Placement of this line of maximum in the May isopleths to

a similar position in the August isopleths provides a reference line separat-

ing common and uncommon factors. Isopleths to the right of this line have a

similar slope indicating that n(r.) in this region increase with elevation at

about the same rate for both months. Isopleth values to the left of this line

decrease in value with elevation in the May data indicating the decrease in the

number of aerosols with r<r m . Isopleths of n'(r.) to the left of this line
m11 -1

* in the August data spread and approach a common value of about 15pm at

Z =200m.

9.2 Average Spectra Near Cloud Base

The average n'(r.) values at the prime levels used to construct Figure 9

were used to construct the average n(r) for May and August at the prime

levels. An average n(r) at the surface for May and August was also con-

structed (the minor elevation differences of the low-level data runs were

ignored). The average N at the surface and at each prime elevation were

used in this construction.

Figure 10 (a through 1) presents the average n(r) at the surface and at

each prime elevation. Because the average Zc for May and August are approx-
cA

imately the same, the average n(r) at the surface essentially represents a Z

of -475m. Most differences in these n(r)'s have been discussed. However,

additional important differences are revealed in Figure 10 in the n(r) changes

from the surface to Z = -20m. For r < 0.9 pm, n(r) is greater for August

than for May at the surface. This cross-over r increases to 3.6pm at Z* =

-40m. At Z > -20m, n(r) for August is essentially greater at all r.

If the humidity increased steadily from the surface to Z as expected in

a well-mixed layer, f should be a function of Z only. Thus, the n(r)'s in

Figure 10 would represent specific values of f for Z < 0.

The rate of increase of n(r) with elevation is greater at all r for the

August data from the surface to Z c . If f is assumed to be the same at each Z

for the May and August data, then dr/df for May and August are different.

* 19



Differences in the chemical characteristics of the nuclei could cause the

difference. A chemical difference (effectively more hygroscopic) and a larger

number of condensation nuclei during August could cause the difference in n(r)

at all elevations. The aerosols for May and August are apparently from

different source regions.

10.0 LIQUID WATER CONTENT

The vertical profile of liquid water content is often used to

characterize stratus clouds. The liquid water content was determined for the

average n(r) and the ±MD n(r)'s by numerical evaluation of

r2
4 2r 3

W = p f r n(r)dr
r1

where r is 0.23 pm, r is 150 pm and p is the density of water.

10.1 Profiles of W

The vertical profiles of W are shown in Figure 11 (a through h) for each

day. These data show a more complete profile of W and provide ranges (±MD) of

W in marine stratus clouds not previously available. Some significant

features revealed in Figure 11 include: (1) a large increase in W from the

surface up to regions near the cloud top; (2) the maximum W in the cloud

increases with cloud thickness; (3) the largest MD's are near Zt and immedi-

ately beneath Zc, (4) most +MD's are greater than -MD's above Zt and below

Zc; (5) the greatest ranges of W from +MD to -MD are observed immediately

below Zc in many profiles and (6) the profiles are considerably more similar

near Zc than near Z . Feature (1) is expected. Features (2) and (6) indicate
that a model of n(r) near Z will be a function of cloud thickness. Features

(3), (4) and (5) provide information on the turbulent mixing processes across

Zc and Zt affecting n(r). Some analyses of relationships between r, N and W

in progress suggest that the turbulent mixing process is inhomogeneous.
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10.2 Profiles of Average W

Profiles of the average W for the May and August data are shown in Figure

12a. The profiles are significantly different. Although W for August is less

than for May near the surface, W for August increases at a greater rate from

the surface to Z 60m. The W's for these months are equal at Z = -150m.
The greater increase of W with elevation below Z 60m for August is

additional evidence that aerosols present in August respond differently to

increases in humidity.

Figure 12a contains regression equations of W a- a funztion of Z for

various elevation spans. The correlation coefficients between W's specified

by these least-square regression equations and the observed W's are 1.00. W

increases exponentially with elevation below Z -60m and linearly above Zc.
*C

The cusp in W(Z ) at Z in the May data is considered to be caused by unusualc
variations in the small data set of three days.

Figure 12b shows an average W(Z ) for the months of May and August and

shows the least-square regression equations for various elevation spans. (An

equal weight was given for the May days and the August days in determining the

average.) W(Z ) is exponential below Z -60m and linear above.

The abrupt changes in AT/AZ at Z (see Fig. 2) are undoubtedly caused by
c

the release of appreciable latent heat commencing at Zc and continuing to near

Zt in saturated air parcels having an average positive rise rate. The sudden

release of latent heat at Z c for rising air parcels suggests that AW/AZ would

increase rapidly at Z . The data indicate only a small increase in AW/AZ

near Z in apparent contradiction to the abrupt changes in AT/AZ. Turbulence,c
undoubtedly present near Z would transport large aerosols from above Z toc C
below Zc and mask the increase in W caused by condensation. Large values of

W below Z suggest the presence of large aerosols below Z possibly carried
+MD c c

by turbulence. Profiles of W(Z ) shown in Figure 12 are considered to be

steady-state profiles representing a balance between condensation and turbulent
transport.
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Figure I 1. Vertical profile of the liquid water content w computed from the aerosol spectra. The
continuous line is the average w. The horizontal lines extend between the mean deviation of w above
and below the average w at the sample levels.
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For I I August 198 1.
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Figure 11I. (Continued,
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I,

Ave aged for the May days (subscript M) and the August days (subscipt A).

200
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100 wA = 1.06 x 10- 5 (z* + 80)2.02

S0 WM WM- 5 .2 6 x 10- 2
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-100 
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Fiiue I- eri. catl ,-iles ( the liqui,3 vatoi onrtent A . The equations were determined h\

,4tItistical regrh sion arnal\ ;m, % "arious elVation spars.
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E :00 AVERAGE OF MAY AND AUGUST
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